Estimating the Distance to a Monotone Function

نویسندگان

  • Nir Ailon
  • Bernard Chazelle
  • Seshadhri Comandur
  • Ding Liu
چکیده

In standard property testing, the task is to distinguish between objects that have a property P and those that are ε-far from P , for some ε > 0. In this setting, it is perfectly acceptable for the tester to provide a negative answer for every input object that does not satisfy P . This implies that property testing in and of itself cannot be expected to yield any information whatsoever about the distance from the object to the property. We address this problem in this paper, restricting our attention to monotonicity testing. A function f : {1, . . . , n} → R is at distance εf from being monotone if it can (and must) be modified at εfn places to become monotone. For any fixed δ > 0, we compute, with probability at least 2/3, an interval [(1/2 − δ)ε, ε] that encloses εf . The running time of our algorithm is O(ε−1 f log log ε −1 f log n), which is optimal within a factor of log log ε−1 f and represents a substantial improvement over previous work. We give a second algorithm with an expected running time of O(ε−1 f log n log log log n).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Nonparametric Tests of Positivity / Monotonicity / Convexity

We consider the problem of estimating the distance from an unknown signal, observed in a white-noise model, to convex cones of positive/monotone/convex functions. We show that, when the unknown function belongs to a Hölder class, the risk of estimating the Lr -distance, 1 ≤ r < ∞, from the signal to a cone is essentially the same (up to a logarithmic factor) as that of estimating the signal its...

متن کامل

Fr{'e}chet and Hausdorff Queries on $x$-Monotone Trajectories

vspace{0.2cm}In this paper, we design a data structure for the following problem. Let $pi$ be an $x$-monotone trajectory with $n$ vertices in the plane and $epsilon >0$. We show how to preprocess $pi$ and $epsilon$ into a data structure such that for any horizontal query segment $Q$ in the plane, one can quickly determine the minimal continuous fraction of $pi$ whose Fr{'e}chet and Hausdo...

متن کامل

Buckling of multi wall carbon nanotube cantilevers in the vicinity of graphite sheets using monotone positive method

In this paper, a monotone positive solution is studied for buckling of a distributed model of multi walled carbon nanotube (MWCNT) cantilevers in the vicinity of thin and thick graphite sheets subject to intermolecular forces. In the modeling of intermolecular forces, Van der Waals forces are taken into account. A hybrid nano-scale continuum model based on Lennard–Jones potential is applied to ...

متن کامل

Parameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance

The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...

متن کامل

W-convergence of the proximal point algorithm in complete CAT(0) metric spaces

‎In this paper‎, ‎we generalize the proximal point algorithm to complete CAT(0) spaces and show‎ ‎that the sequence generated by the proximal point algorithm‎ $w$-converges to a zero of the maximal‎ ‎monotone operator‎. ‎Also‎, ‎we prove that if $f‎: ‎Xrightarrow‎ ‎]-infty‎, +‎infty]$ is a proper‎, ‎convex and lower semicontinuous‎ ‎function on the complete CAT(0) space $X$‎, ‎then the proximal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2004